SYNTHESIS AND MODELING OF PLASMA VERTICAL SPEED, SHAPE, AND CURRENT PROFILE CONTROL SYSTEMS IN TOKAMAK

Y. Mitrishkin1,3,4, A. Korostelev1, N. Kartsev1
R. Khayrutdinov2, V. Dokuka2
A. Kadurin3, A. Vertinskiy3
I. Sushin4

1 Bauman Moscow State Technical University
2 Troitsk Institute of Innovations and Fusion Technology
3 Institute of Control Sciences, Russian Academy of Sciences
4 Moscow Institute of Physics and Technology (State University)

7&8 May, 2008, Eindhoven University of Technology, the Netherlands
Workshop “Control for Nuclear Fusion”
CONTENTS

▸ Problem statement of plasma magnetic control as a time-varying parameters plant

▸ Plasma Vertical Speed, Current and Shape Control Systems in ITER modeled on DINA code
 – H_∞ Control
 – Model Predictive Control with Constraints

▸ Plasma vertical speed ITER model identification on DINA code

▸ Time-varying controller design for plasma vertical speed stabilization around zero

▸ Plasma Current Profile Control System

▸ Conclusions
PROBLEM STATEMENT OF PLASMA MAGNETIC CONTROL DURING LIMITER AND DIVERTER PHASES

Vertical cross sections of ITER

Magnetic plasma control system is to:
- track gaps between plasma boundary and 6 reference points moving in space along predetermined trajectories
- track plasma current reference signal
- stabilize plasma vertical speed around zero
EXAMPLES OF ITER PLASMA CONFIGURATIONS

Examples of reference points location

\[t_1 = 4.61 \text{ s} \quad \text{Initial moment} \]
\[t_2 = 29.37 \text{ s} \quad \text{Diverter configuration creation} \]
\[t_3 = 100 \text{ s} \quad \text{Plasma current flattop is reached} \]
LINEAR TIME-VARYING MODEL OF ITER SCENARIO

Linearized model of plasma in tokamak

\[\frac{dx}{dt} = Ax + Bu + E \frac{dw}{dt}, \quad y = Cx + Fw, \quad y = \left[\delta g \delta I_{PF} \delta I_p \delta Z_p \delta R_p \right]^T, \quad w = \left[\delta \beta_p \delta l_i \right]^T \]

PROPOSAL

- Create a number of ITER basic linearized models on DINA code

 \[A(t_i), B(t_i), C(t_i), D(t_i), E(t_i), F(t_i), \quad i = 1, \ldots, N \]

- Create of linearized model of the whole ITER scenario by interpolation of basic linear models for time-varying controller design

\[
\begin{align*}
A(t) &= \begin{bmatrix} A(t_{i-1}) & A(t_i) \end{bmatrix} \alpha(t), \\
C(t) &= \begin{bmatrix} C(t_{i-1}) & C(t_i) \end{bmatrix} \beta(t), \\
B(t) &= \begin{bmatrix} B(t_{i-1}) & B(t_i) \end{bmatrix} \alpha(t), \\
D(t) &= \begin{bmatrix} D(t_{i-1}) & D(t_i) \end{bmatrix} \beta(t), \\
E(t) &= \begin{bmatrix} E(t_{i-1}) & E(t_i) \end{bmatrix} \alpha(t), \\
F(t) &= \begin{bmatrix} F(t_{i-1}) & F(t_i) \end{bmatrix} \beta(t), \\
\end{align*}
\]

\[\alpha(t) = \frac{t_i - t}{t_i - t_{i-1}}, \quad \beta(t) = \frac{t - t_{i-1}}{t_i - t_{i-1}} \]
FREQUENCY RESPONSES OF TRANSFER FUNCTIONS

Linear equations used for control system simulation

\[\frac{dx}{dt} = Ax + [M \ E \ B][w \ v \ u]^T, \quad M = 0, \quad v = \frac{dw}{dt}, \]
\[y = Cx + [F \ N \ D][w \ v \ u]^T, \quad N = 0, \quad D = 0 \]

Plant model transfer functions

\[G(s) = C(sI - A)^{-1}[M \ E \ B] + [F \ N \ D] \]

Max and Min singular values of transfer function

\[\bar{\sigma}(G) = +\sqrt{\lambda_{\text{max}}(G^H G)}, \quad \sigma(G) = +\sqrt{\lambda_{\text{min}}(G^H G)} \]

\[\bar{\sigma}[G(j\omega)]I_p = 11.5, 12.5, 13.5, 15 \text{ MA}, \quad t_i = 56.21, 63.22, 72.55, 100 \text{ s} \]

\[\sigma[G(j\omega)] \]
TIME-VARYING CONTROLLER SYNTHESIS

PROPOSAL

• Synthesis of time-varying controller which adapts to current plasma magnetic configurations to achieve maximum stability margin.

• Time-varying controller is the result of interpolation of the set of time-invariant controllers designed at reference points of ITER scenario.

Time-varying controller is formed from controller transfer functions

\[
K(s,t) = \alpha(t)K_{i-1}(s) + \beta(t)K_i(s)
\]

\[
\alpha(t) + \beta(t) = 1
\]
PLASMA MAGNETIC CONTROL SYSTEM IN ITER
H_{\infty} SCALAR & MULTIVARIABLE TIME-VARYING CONTROLLERS DESIGNED BY LOOP SHAPING APPROACH

Time-varying DINA-L model, no PF currents variations in feedback
Plant model interpolation of 11.5 MA and 15 MA points at [0, 10] sec
H∞ CONTROLLER DESIGNED BY MIXED SENSITIVITY APPROACH FOR PLASMA CURRENT RAMP-UP PHASE

Time-invariant P and H∞ controllers, PF currents variations in feedback
Plant model interpolation of 11.5 MA and 15 MA points at [5, 10] sec

Gap displacements

CS&PF Currents variations

Control voltages
SINGULAR VALUES FREQUENCY RESPONSES OF OPEN AND CLOSED LOOP SYSTEMS

\[L_0 = GK \]
\[S = (I + L_0)^{-1} \]
\[T = L_0(I + L_0)^{-1} \]
\[S_0 + T_0 = I \]
\[\frac{1}{\bar{\sigma}(S_0)} \leq \bar{\sigma}(L_0) + 1 \]
\[\bar{\sigma}(L_0) \gg 1 \Rightarrow \bar{\sigma}(S_0) \approx \frac{1}{\bar{\sigma}(L_0)} \]
\[\bar{\sigma}(L_0) \ll 1 \Rightarrow \bar{\sigma}(T_0) \approx \bar{\sigma}(L_0) \]
\[\bar{\sigma}(\Delta) \leq \frac{1}{\bar{\sigma}(T_0)} \]

Low frequencies \[\bar{\sigma}(L_0) \gg 1 \Rightarrow \bar{\sigma}(S_0) \ll 1 \] Disturbance rejection
High frequencies \[\bar{\sigma}(L_0) \ll 1 \Rightarrow \bar{\sigma}(T_0) \ll 1 \] Robust stability
PLASMA SHAPE & CURRENT CONTROL SYSTEMS OPERATION ON DINA CODE

Gap displacements

Control voltages, MPC

Control voltages, H_∞ control

Plasma current variation

CS&PF currents variations, MPC

Plasma vertical speed

CS&PF currents variations, H_∞ control
PLASMA VERTICAL SPEED STABILIZATION AROUND ZERO ON DINA-L MODELS AT SIX SCENARIO POINTS

Scalar system of plasma vertical speed control

Proportional controllers adjusted by trial-and-error methodology

H_{∞} robust controllers systematically designed on the base of reduced model by loop-shaping approach
IDENTIFICATION OF CLOSED-LOOP SYSTEM OF PLASMA VERTICAL SPEED IN ITER ON DINA CODE

Data for identification

Reference signal and vertical speed, m/s

Time, s

Reference signal
Closed-loop system output

Data for validation

Reference signal and vertical speed, m/s

Time, s

Reference signal
Closed-loop system output

Stable closed-loop transfer function to be identified

\[\Phi(s) = \frac{K}{(T_1s + 1)(T_2s + 1)} \]

Identification problem statement

\[V(K, T_1, T_2) = \sum_i \left(\hat{Z}_i - Z_i \right)^2 \rightarrow \min \]

Identification result

\[K = 3.5654, \ T_1 = 0.11464, \ T_2 = 0.080859 \]
OPEN-LOOP TRANSFER FUNCTION EXTRACTION

Stable closed-loop transfer function obtained by identification

\[\Phi(s) = \frac{K_P W(s)}{1 + K_P W(s)} \]

Unstable open-loop transfer function obtained from closed-loop system

\[W(s) = \frac{K_P \Phi(s)}{1 - K_P \Phi(s)} \]

\(K_P \) is gain of proportional controller, \(W(s) \) is plant transfer function

IDENTIFIED TRANSFER FUNCTION OF PLANT MODEL

\[W(s) = \frac{-17.4838}{(s+30.24)(s-9.152)} = \frac{0.0632}{(-0.1093s + 1)(0.0331s + 1)} \]
VALIDATION OF IDENTIFIED UNSTABLE MODEL IN STABLE CLOSED-LOOP SYSTEM
STABILITY OF SYSTEM WITH P-CONTROLLER

Transfer function of open-loop system

\[W(s) = \frac{0.0632}{(-0.1093s + 1)(0.0331s + 1)} = \frac{K}{(T_1s + 1)(T_2s + 1)} \]

Closed-loop system with P-controller \(K_p \)

\[\Phi(s) = \frac{K_pK}{K_pK + (T_1s + 1)(T_2s + 1)} \]

Characteristic equation

\[T_1T_2s^2 + (T_1 + T_2)s + (1 + K_pK) = 0 \]

Characteristic equation roots

\[s_{1,2}^* = \frac{1}{2\cdot T_1T_2} \left[-T_1 - T_2 \pm \sqrt{T_1^2 - 2T_1T_2 + T_2^2 - 4T_1T_2K_pK}\right] \]

Condition of closed-loop stability

\[K_p < -\frac{1}{K} \approx -15.8 \]
STABILITY MARGINS AND ROOT LOCUS
OF CLOSED-LOOP SYSTEM

Nyquist diagram

Bode diagram

Root locus

Phase stability margin = 27.8°
Amplitude stability margin = -3 dB
CONTROLLER DESIGN FOR LINEAR TIME-VARYING PLANT WITH UNCERTAINTY IN PARAMETERS

Linear time-varying plant model

\[\dot{x}_1 = u, \quad \dot{x}_2 = a(t) x_2 + b(t) x_1 \]

Problem statement: Controller to be synthesized in the negative feedback has to stabilize poles of closed-loop control system.

Plant model non-stationary parameters with uncertainty

Parameters \(a(t) \) and \(b(t) \) are known at seven points \(t_i \) at interval 0 -100 sec.
IDEAL TIME-VARYING CONTROLLER DESIGN

Known plant parameters

\[a(t) = 0.1 \sin(2\pi/400) \]
\[b(t) = 1 + \exp(-0.3t) \]

State control law

\[u = -\left[k_1(t) \ k_2(t) \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]^T \]

Characteristic equation of closed-loop system

\[
\det \left\{ \begin{bmatrix} -k_1(t) & -k_2(t) \\ b(t) & a(t) \end{bmatrix} - sI \right\} = 0
\]

Non-stationary and non-linear controller parameters

\[k_1(t) = a(t) - 2s_0 \]
\[k_2(t) = \frac{s_0^2 + (a(t) - 2s_0)a(t)}{b(t)} \]

\(s_0 \) is multiple pole of closed-loop system

Time-varying controller stabilizes dynamics of closed-loop system by stabilization of multiple pole
Closed-loop system with uncertainty

\[K(t) = \alpha(t)K_i + \beta(t)K_{i+1}, \quad i = 0,1,2...6 \]

Piecewise interpolated controller

Time responses at additive output disturbance \(d \) and various values of \(s_0 \)
INTERPOLATION OF CONTROLLER PARAMETERS

Influence of controller parameters interpolation methodology on accuracy of plant state control

Piecewise interpolation
\[x_1: 2.8 \% \]
\[x_2: 3.0 \% \]

Cubic splines
\[x_1: 1.6 \% \]
\[x_2: 1.3 \% \]
KINETIC MODEL FOR PLASMA CURRENT PROFILE CONTROL

• Plant controlled model is diffusion equation of magnetic field into plasma (DINA code modification)

• Diffusion equation is solved at fixed plasma current as well as at stationary profiles of plasma temperature and density

• For plasma current profile control five independent current drive sources (actuators) are used

• Plasma current density is measured at five points of tokamak minor radius
TESTING OF PLASMA KINETIC MODEL

Step test actions

- Plant model is a multilink system with distributed parameters
- Testing of plasma model was done by step actions up to achieving stationary values of plasma current density at measured points
MATRIX OF STATIC COEFFICIENTS

Static connections of plant “input-output”

Matrix of columns of input signals

Matrix of columns of output signals

initial values

Matrix of columns of steady-state values of output signals

Matrix of static coefficients

\[
Y = KU + Y_0, \quad U, Y, K \in \mathbb{R}^{5 \times 5}
\]

\[
U = \begin{bmatrix}
 u_1 & u_2 & u_3 & u_4 & u_5
\end{bmatrix}
\]

\[
Y_0 = \begin{bmatrix}
 y_0 & y_0 & y_0 & y_0 & y_0
\end{bmatrix}
\]

\[
Y^* = \begin{bmatrix}
 y_1^* & y_2^* & y_3^* & y_4^* & y_5^*
\end{bmatrix}
\]

\[
K = \left(Y^* - Y_0 \right) U^{-1}
\]
Basic control principles

- Decoupling of control channels by means of inverse static matrix K^{-1}
- Initial values of output signals are compensated by additive input signals
 \[u_0 = K^{-1}(y_{ref} - y_0) \]
- Integral units with negative feedback are included in each channel creating astatic diagonal matrix controller
- Multivariable control law
 \[u = K^{-1} \text{diag}\left[\frac{k_i}{s} \right] e + u_0 \]
MODEL TRANSFER TO GIVEN PROFILE
AND RETURN TO INITIAL PROFILE

Plasma temperature range at magnetic axis [0.1, 5] keV
MODEL TRANSFER TO GIVEN PROFILE AND FEEDBACK
DISCONNECTION AT RELAXATION PHASE
CONCLUSIONS

- New problem statement of plasma magnetic control as a time-varying parameters plant was formulated.

- Scalar and multivariable time-varying plasma magnetic H_∞ controllers were synthesized and simulated on linearized ITER scenario of DINA code at a portion of plasma current ramp-up phase for plasma vertical speed, shape and current control.

- Plasma vertical speed model was identified on DINA code as a plant of the second order with stable and unstable poles.

- Time-varying controller for plasma vertical speed stabilization around zero was designed and simulated on second order plant model with parameters uncertainty.

- Plasma current profile model and astatic control system with decoupling channels were developed and simulated on DINA code modification.